
Picrin Documentation
Release 0.1

Yuichi Nishiwaki and other picrin contributors

February 02, 2016

Contents

1 Introduction 3
1.1 Homepage . 3
1.2 Documentation . 3
1.3 IRC . 3
1.4 LICENSE . 4

2 Installation 5
2.1 Build . 5
2.2 Install . 5
2.3 Requirement . 5

3 Language 7
3.1 The REPL . 7
3.2 Compliance with R7RS . 7

4 Standard Libraries 11
4.1 (picrin macro) . 11
4.2 (picrin array) . 12
4.3 (picrin dictionary) . 13
4.4 (picrin user) . 13

5 C API 15
5.1 Extension Library . 15

6 Indices and tables 17

i

ii

Picrin Documentation, Release 0.1

Contents:

Contents 1

Picrin Documentation, Release 0.1

2 Contents

CHAPTER 1

Introduction

Picrin is a lightweight R7RS scheme implementation written in pure C89. It contains a reasonably fast VM, an
improved hygienic macro system, usuful contribution libraries, and simple but powerful C interface.

• R7RS compatible

• Reentrant design (all VM states are stored in single global state object)

• Bytecode interpreter

• Direct threaded VM

• Internal representation by nan-boxing (available only on x64)

• Conservative call/cc implementation (VM stack and native c stack can interleave)

• Exact GC (simple mark and sweep, partially reference count)

• String representation by rope

• Hygienic macro transformers (syntactic closures, explicit and implicit renaming macros)

• Extended library syntax

1.1 Homepage

Currently picrin is hosted on Github. You can freely send a bug report or pull-request, and fork the repository.

https://github.com/picrin-scheme/picrin

1.2 Documentation

See http://picrin.readthedocs.org/

1.3 IRC

There is a chat room on chat.freenode.org, channel #picrin. IRC logs here: https://botbot.me/freenode/picrin/

3

https://github.com/picrin-scheme/picrin
http://picrin.readthedocs.org/
https://botbot.me/freenode/picrin/

Picrin Documentation, Release 0.1

1.4 LICENSE

Copyright (c) 2013-2014 Yuichi Nishiwaki and other picrin contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

4 Chapter 1. Introduction

CHAPTER 2

Installation

Installation instructions below.

2.1 Build

Just type make in the project root directory. You will find an executable binary newly created at bin/ directory.

$ make

When you are building picrin on x86_64 system, PIC_NAN_BOXING flag is automatically turned on (see in-
clude/picrin/config.h for detail).

2.2 Install

make install target is provided. By default it installs picrin binary into /usr/local/bin/.

$ make install

Since picrin does not use autoconf, if you want to specify the install directory, pass the custom path to make via
command line argument.

$ make install prefix=/path/to/dir

2.3 Requirement

To build Picrin Scheme from source code, some external libraries are required:

• perl

• regex.h of POSIX.1

• libedit (optional)

Make command automatically turns on optional libraries if available. Picrin is mainly developed on Mac OS X and
only tested on OS X or Ubuntu 14.04+. When you tried to run picrin on other platforms and found something was
wrong with it, please send us an issue.

5

Picrin Documentation, Release 0.1

6 Chapter 2. Installation

CHAPTER 3

Language

Picrin’s core language is the R7RS scheme with some powerful extensions. Please visit http://r7rs.org/ for the infor-
mation of R7RS’s design and underlying thoughts.

3.1 The REPL

At the REPL start-up time, some usuful built-in libraries listed below will be automatically imported.

• (scheme base)

• (scheme load)

• (scheme process-context)

• (scheme write)

• (scheme file)

• (scheme inexact)

• (scheme cxr)

• (scheme lazy)

• (scheme time)

• (scheme case-lambda)

• (scheme read)

• (scheme eval)

3.2 Compliance with R7RS

section status comments
2.2 Whitespace and comments yes
2.3 Other notations incomplete #e #i #b #o #d #x
2.4 Datum labels yes
3.1 Variables, syntactic keywords, and regions
3.2 Disjointness of types yes
3.3 External representations

Continued on next page

7

http://r7rs.org/

Picrin Documentation, Release 0.1

Table 3.1 – continued from previous page
section status comments
3.4 Storage model yes
3.5 Proper tail recursion yes As the report specifies, apply, call/cc, and call-with-values perform tail calls
4.1.1 Variable references yes
4.1.2 Literal expressions yes
4.1.3 Procedure calls yes In picrin () is self-evaluating
4.1.4 Procedures yes
4.1.5 Conditionals yes In picrin (if #f #f) returns #f
4.1.6 Assignments yes
4.1.7 Inclusion incomplete include-ci
4.2.1 Conditionals yes
4.2.2 Binding constructs yes
4.2.3 Sequencing yes
4.2.4 Iteration yes
4.2.5 Delayed evaluation yes
4.2.6 Dynamic bindings yes
4.2.7 Exception handling yes guard syntax.
4.2.8 Quasiquotation yes can be safely nested. TODO: multiple argument for unquote
4.2.9 Case-lambda yes
4.3.1 Bindings constructs for syntactic keywords yes 1

4.3.2 Pattern language yes syntax-rules
4.3.3 Signaling errors in macro transformers yes
5.1 Programs yes
5.2 Import declarations yes
5.3.1 Top level definitions yes
5.3.2 Internal definitions yes
5.3.3 Multiple-value definitions yes
5.4 Syntax definitions yes
5.5 Recored-type definitions yes
5.6.1 Library Syntax yes In picrin, libraries can be reopend and can be nested.
5.6.2 Library example N/A
5.7 The REPL yes
6.1 Equivalence predicates yes
6.2.1 Numerical types yes picrin has only two types of internal representation of numbers: fixnum and double float. It still comforms the R7RS spec.
6.2.2 Exactness yes
6.2.3 Implementation restrictions yes
6.2.4 Implementation extensions yes
6.2.5 Syntax of numerical constants yes
6.2.6 Numerical operations yes denominator, numerator, and rationalize are not supported for now. Also, picrin does not provide complex library procedures.
6.2.7 Numerical input and output yes
6.3 Booleans yes
6.4 Pairs and lists yes list? is safe for using against circular list.
6.5 Symbols yes
6.6 Characters yes
6.7 Strings yes
6.8 Vectors yes
6.9 Bytevectors yes
6.10 Control features yes
6.11 Exceptions yes
6.12 Environments and evaluation yes

Continued on next page

8 Chapter 3. Language

Picrin Documentation, Release 0.1

Table 3.1 – continued from previous page
section status comments
6.13.1 Ports yes
6.13.2 Input yes
6.13.3 Output yes
6.14 System interface yes

1Picrin provides hygienic macros in addition to so-called legacy macro (define-macro), such as syntactic closure, explicit renaming macro,
and implicit renaming macro.

3.2. Compliance with R7RS 9

Picrin Documentation, Release 0.1

10 Chapter 3. Language

CHAPTER 4

Standard Libraries

Picrin’s all built-in libraries are described below.

4.1 (picrin macro)

Utility functions and syntaces for macro definition.

• define-macro

• gensym

• ungensym

• macroexpand

• macroexpand-1

Old-fashioned macro.

• identifier?

• identifier=?

• make-syntactic-closure

• close-syntax

• capture-syntactic-environment

• sc-macro-transformer

• rsc-macro-transformer

Syntactic closures.

• er-macro-transformer

• ir-macro-transformer

• strip-syntax

Explicit renaming macro family.

11

Picrin Documentation, Release 0.1

4.2 (picrin array)

Resizable random-access list.

Technically, picrin’s array is implemented as a ring-buffer, effective double-ended queue data structure (deque) that
can operate pushing and poping from both of front and back in constant time. In addition to the deque interface, array
provides standard sequence interface similar to functions specified by R7RS.

• (make-array [capacity])

Returns a newly allocated array object. If capacity is given, internal data chunk of the array object will be
initialized by capacity size.

• (array . objs)

Returns an array initialized with objs.

• (array? . obj)

Returns #t if obj is an array.

• (array-length ary)

Returns the length of ary.

• (array-ref ary i)

Like list-ref, return the object pointed by the index i.

• (array-set! ary i obj)

Like list-set!, substitutes the object pointed by the index i with given obj.

• (array-push! ary obj)

Adds obj to the end of ary.

• (array-pop! ary)

Removes the last element of ary, and returns it.

• (array-unshift! ary obj)

Adds obj to the front of ary.

• (array-shift! ary)

Removes the first element of ary, and returns it.

• (array-map proc ary)

Performs mapping operation on ary.

• (array-for-each proc ary)

Performs mapping operation on ary, but discards the result.

• (array->list ary)

Converts ary into list.

• (list->array list)

Converts list into array.

12 Chapter 4. Standard Libraries

Picrin Documentation, Release 0.1

4.3 (picrin dictionary)

Symbol-to-object hash table.

• (make-dictionary)

Returns a newly allocated empty dictionary.

• (dictionary . plist)

Returns a dictionary initialized with the content of plist.

• (dictionary? obj)

Returns #t if obj is a dictionary.

• (dictionary-ref dict key)

Look up dictionary dict for a value associated with key. If dict has a slot for key key, a pair containing the key
object and the associated value is returned. Otherwise #f is returned.

• (dictionary-set! dict key obj)

If there is no value already associated with key, this function newly creates a binding of key with obj. Otherwise,
updates the existing binding with given obj.

If obj is #undefined, this procedure behaves like a deleter: it will remove the key/value slot with the name key
from the dictionary. When no slot is associated with key, it will do nothing.

• (dictionary-size dict)

Returns the number of registered elements in dict.

• (dicitonary-map proc dict)

Perform mapping action onto dictionary object. proc is called by a sequence (proc key1 key2 ...).

• (dictionary-for-each proc dict)

Similar to dictionary-map, but discards the result.

• (dictionary->plist dict)

• (plist->dictionary plist)

• (dictionary->alist dict)

• (alist->dictionary alist)

Conversion between dictionary and alist/plist.

4.4 (picrin user)

When you start the REPL, you are dropped into here.

4.3. (picrin dictionary) 13

Picrin Documentation, Release 0.1

14 Chapter 4. Standard Libraries

CHAPTER 5

C API

You can write Picrin’s extension by yourself from both sides of C and Scheme. This page describes the way to control
the interpreter from the C world.

5.1 Extension Library

If you want to create a contribution library with C, the only thing you need to do is make a directory under contrib/.
Below is a sample code of extension library.

• contrib/add/nitro.mk

CONTRIB_INITS += add
CONTRIB_SRCS += contrib/add/add.c

• contrib/add/add.c

#include "picrin.h"

static pic_value
pic_add(pic_state *pic)
{

double a, b;

pic_get_args(pic, "ff", &a, &b);

return pic_float_value(a + b);
}

void
pic_init_add(pic_state *pic)
{

pic_deflibrary (pic, "(picrin add)") {
pic_defun(pic, "add", pic_add);

}
}

After recompiling the interpreter, the library “(picrin add)” is available in the REPL, which library provides a funciton
“add”.

15

Picrin Documentation, Release 0.1

5.1.1 User-data vs GC

When you use dynamic memory allocation inside C APIs, you must be caseful about Picrin’s GC. Fortunately, we
provides a set of wrapper functions for complete abstraction of GC. In the case below, the memory (de)allocators
create_foo and finalize_foo are wrapped in pic_data object, so that when an instance of foo losts all references from
others to it picrin can automatically finalize the orphan object.

/** foo.c **/
#include <stdlib.h>
#include "picrin.h"

/*
* C-side API

*/

struct foo {
// blah blah blah

};

struct foo *
create_foo ()
{

return malloc(sizeof(struct foo));
}

void
finalize_foo (void *foo) {
struct foo *f = foo;
free(f);

}

/*
* picrin-side FFI interface

*/

static const pic_data_type foo_type = { "foo", finalize_foo };

static pic_value
pic_create_foo(pic_state *pic)
{

struct foo *f;
struct pic_data *dat;

pic_get_args(pic, ""); // no args here

f = create_foo();

data = pic_data_alloc(pic, &foo_type, md);

return pic_obj_value(data);
}

void
pic_init_foo(pic_state *pic)
{

pic_defun(pic, "create-foo", pic_create_foo); // (create-foo)
}

16 Chapter 5. C API

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

17

	Introduction
	Homepage
	Documentation
	IRC
	LICENSE

	Installation
	Build
	Install
	Requirement

	Language
	The REPL
	Compliance with R7RS

	Standard Libraries
	(picrin macro)
	(picrin array)
	(picrin dictionary)
	(picrin user)

	C API
	Extension Library

	Indices and tables

